shinyHeatmaply – a shiny app for creating interactive cluster heatmaps

My friend Jonathan Sidi and I (Tal Galili) are pleased to announce the release of shinyHeatmaply (0.1.0): a new Shiny application (and Shiny gadget) for creating interactive cluster heatmaps. shinyHeatmaply is based on the heatmaply R package which strives to make it easy as possible to create interactive cluster heatmaps.

The app introduces a functionality that saves to disk a self contained copy of the htmlwidget as an html file with your data and specifications you set from the UI, so it can be embedded in webpages, blogposts and online web appendices for academic publications.

You can see some of shinyHeatmaply‘s capabilities in the following 40 seconds video:

 

Installing shinyHeatmaply

From CRAN:

install.packages('shinyHeatmaply')

From github:

devtools::install_github('yonicd/shinyHeatmaply')

Running the app/gadget

The application has an import interface as part of the application which currently supports csv, txt, tab, xls, xlsx, rd, rda. You can start the app using:

library(shiny)
library(heatmaply)
# If you didn't get shinyHeatmaply yet, you can run it through github:
# runGitHub("yonicd/shinyHeatmaply",subdir = 'inst/shinyapp')
# or just use your locally installed package:
library(shinyHeatmaply)
runApp(system.file("shinyapp", package = "shinyHeatmaply"))

The gadget is called from the R console and accepts input arguments. The object defined as the input to the shinyHeatmaply gadget is a data.frame or a list of data.frames. You can start it using the following code:

library(shinyHeatmaply)
 
#single data.frame
data(mtcars)
launch_heatmaply(mtcars)
 
#list
data(iris)
launch_heatmaply(list('Example1'=mtcars,'Example2'=iris))

You can see an example of a saved shinyHeatmaply output here. Or view the following iframe:

Continue reading “shinyHeatmaply – a shiny app for creating interactive cluster heatmaps”

R 3.3.3 is released!

R 3.3.3 (codename “Another Canoe”) was released yesterday You can get the latest binaries version from here. (or the .tar.gz source code from here). The full list of bug fixes and new features is provided below.

A quick summary by David Smith:

R 3.3.3 fixes an issue related to attempting to use download.file on sites that automatically redirect from http to https: now, R will re-attempt to download the secure link rather than failing. Other fixes include support for long vectors in the vapply function, the ability to use pmax (and pmin) on ordered factors, improved accuracy for qbeta for some extreme cases, corrected spelling for “Cincinnati” in the precip data set, and a few other minor issues.

Upgrading to R 3.3.3 on Windows

If you are using Windows you can easily upgrade to the latest version of R using the installr package. Simply run the following code in Rgui:

install.packages("installr") # install 
setInternet2(TRUE) # only for R versions older than 3.3.0
installr::updateR() # updating R.

Running “updateR()” will detect if there is a new R version available, and if so it will download+install it (etc.). There is also a step by step tutorial (with screenshots) on how to upgrade R on Windows, using the installr package. If you only see the option to upgrade to an older version of R, then change your mirror or try again in a few hours (it usually take around 24 hours for all CRAN mirrors to get the latest version of R).

I try to keep the installr package updated and useful, so if you have any suggestions or remarks on the package – you are invited to open an issue in the github page.

Continue reading “R 3.3.3 is released!”