John Fox is (very) well known in the R community for many contributions to R, including the car package (which any one who is interested in performing SS type II and III repeated measures anova in R, is sure to come by), the Rcmdr pacakge (one of the two major GUI’s for R, the second one is Deducer), sem (for Structural Equation Models) and more. These might explain why I think having him release a new edition for his book to be big news for the R community of users.

In this new edition, Professor Fox has teamed with Professor Sandy Weisberg, to refresh the original edition so to cover the development gained in the (nearly) 10 years since the first edition was written.

Here is what John Fox had to say:

Dear all,

Sandy Weisberg and I would like to announce the publication of the second edition of An R Companion to Applied Regression (Sage, 2011).

As is immediately clear, the book now has two authors and S-PLUS is gone from the title (and the book). The R Companion has also been thoroughly rewritten, covering developments in the nearly 10 years since the first edition was written and expanding coverage of topics such as R graphics and R programming. As before, however, the R Companion provides a general introduction to R in the context of applied regression analysis, broadly construed. It is available from the publisher at (US) or (UK), and from Amazon (see here)

The book is augmented by a web site with data sets, appendices on a variety of topics, and more, and it associated with the car package on CRAN, which has recently undergone an overhaul.

Repeated measures ANOVA is a common task for the data analyst.

There are (at least) two ways of performing “repeated measures ANOVA” using R but none is really trivial, and each way has it’s own complication/pitfalls (explanation/solution to which I was usually able to find through searching in the R-help mailing list).

So for future reference, I am starting this page to document links I find to tutorials, explanations (and troubleshooting) of “repeated measure ANOVA” done with R

Functions and packages

(I suggest using the tutorials supplied bellow for how to use these functions)

aov {stats} – offers SS type I repeated measures anova, by a call to lm for each stratum. A short example is given in the ?aov help file

Anova {car} – Calculates type-II or type-III analysis-of-variance tables for model objects produced by lm, and for various other object. The ?Anova help file offers an example for how to use this for repeated measures

ezANOVA {ez} – This function provides easy analysis of data from factorial experiments, including purely within-Ss designs (a.k.a. “repeated measures”), purely between-Ss designs, and mixed within-and-between-Ss designs, yielding ANOVA results and assumption checks. It is a wrapper of the Anova {car} function, and is easier to use. The ez package also offers the functions ezPlot and ezStats to give plot and statistics of the ANOVA analysis. The ?ezANOVA help file gives a good demonstration for the functions use (My thanks goes to Matthew Finkbe for letting me know about this cool package)

friedman.test {stats} – Performs a Friedman rank sum test with unreplicated blocked data. That is, a non-parametric one-way repeated measures anova. I also wrote a wrapper function to perform and plot a post-hoc analysis on the friedman test results

Non parametric multi way repeated measures anova – I believe such a function could be developed based on the Proportional Odds Model, maybe using the {repolr} or the {ordinal} packages. But I still didn’t come across any function that implements these models (if you do – please let me know in the comments).

Repeated measures, non-parametric, multivariate analysis of variance – as far as I know, such a method is not currently available in R. There is, however, the Analysis of similarities (ANOSIM) analysis which provides a way to test statistically whether there is a signiﬁcantdifference between two or more groups of sampling units. Is is available in the {vegan} package through the “anosim” function. There is also a tutorial and a relevant published paper.

Good Tutorials

A basic tutorial about ANOVA with R (only the last bit holds some example of repeated measures) on personality-project

Unbalanced design Unbalanced design doesn’t work when doing repeated measures ANOVA with aov, it just doesn’t. This situation occurs if there are missing values in the data or that the data is not from a fully balanced design. The way this will show up in your output is that you will see the between subject section showing withing subject variables.

A solution for this might be to use the Anova function from library car with parameter type=”III”. But before doing that, first make sure you understand the difference between SS type I, II and III. Here is a good tutorial for helping you out with that. By the way, these links are also useful in case you want to do a simple two way ANOVA for unbalanced design

I will “later” add R-help mailing list discussions that I found helpful on the subject.

If you come across good resources, please let me know about them in the comments.

My goal in this post is to give an overview of Friedman’s Test and then offer R code to perform post hoc analysis on Friedman’s Test results. (The R function can be downloaded from here)

Preface: What is Friedman’s Test

Friedman test is a non-parametric randomized block analysis of variance. Which is to say it is a non-parametric version of a one way ANOVA with repeated measures. That means that while a simple ANOVA test requires the assumptions of a normal distribution and equal variances (of the residuals), the Friedman test is free from those restriction. The price of this parametric freedom is the loss of power (of Friedman’s test compared to the parametric ANOVa versions).

The hypotheses for the comparison across repeated measures are:

H0: The distributions (whatever they are) are the same across repeated measures

H1: The distributions across repeated measures are different

The test statistic for the Friedman’s test is a Chi-square with [(number of repeated measures)-1] degrees of freedom. A detailed explanation of the method for computing the Friedman test is available on Wikipedia.

Performing Friedman’s Test in R is very simple, and is by using the “friedman.test” command.

Post hoc analysis for the Friedman’s Test

Assuming you performed Friedman’s Test and found a significant P value, that means that some of the groups in your data have different distribution from one another, but you don’t (yet) know which. Therefor, our next step will be to try and find out which pairs of our groups are significantly different then each other. But when we have N groups, checking all of their pairs will be to perform [n over 2] comparisons, thus the need to correct for multiple comparisons arise. The tasks: Our first task will be to perform a post hoc analysis of our results (using R) – in the hope of finding out which of our groups are responsible that we found that the null hypothesis was rejected. While in the simple case of ANOVA, an R command is readily available (“TukeyHSD”), in the case of friedman’s test (until now) the code to perform the post hoc test was not as easily accessible. Our second task will be to visualize our results. While in the case of simple ANOVA, a boxplot of each group is sufficient, in the case of a repeated measures – a boxplot approach will be misleading to the viewer. Instead, we will offer two plots: one of parallel coordinates, and the other will be boxplots of the differences between all pairs of groups (in this respect, the post hoc analysis can be thought of as performing paired wilcox.test with correction for multiplicity).

R code for Post hoc analysis for the Friedman’s Test

The analysis will be performed using the function (I wrote) called “friedman.test.with.post.hoc”, based on the packages “coin” and “multcomp”. Just a few words about it’s arguments:

formu – is a formula object of the shape: Y ~ X | block (where Y is the ordered (numeric) responce, X is a group indicator (factor), and block is the block (or subject) indicator (factor)

data – is a data frame with columns of Y, X and block (the names could be different, of course, as long as the formula given in “formu” represent that)

All the other parameters are to allow or suppress plotting of the results.

friedman.test.with.post.hoc <- function(formu, data, to.print.friedman = T, to.post.hoc.if.signif = T, to.plot.parallel = T, to.plot.boxplot = T, signif.P = .05, color.blocks.in.cor.plot = T, jitter.Y.in.cor.plot =F)
{
# formu is a formula of the shape: Y ~ X | block
# data is a long data.frame with three columns: [[ Y (numeric), X (factor), block (factor) ]]
# Note: This function doesn't handle NA's! In case of NA in Y in one of the blocks, then that entire block should be removed.
# Loading needed packages
if(!require(coin))
{
print("You are missing the package 'coin', we will now try to install it...")
install.packages("coin")
library(coin)
}
if(!require(multcomp))
{
print("You are missing the package 'multcomp', we will now try to install it...")
install.packages("multcomp")
library(multcomp)
}
if(!require(colorspace))
{
print("You are missing the package 'colorspace', we will now try to install it...")
install.packages("colorspace")
library(colorspace)
}
# get the names out of the formula
formu.names <- all.vars(formu)
Y.name <- formu.names[1]
X.name <- formu.names[2]
block.name <- formu.names[3]
if(dim(data)[2] >3) data <- data[,c(Y.name,X.name,block.name)] # In case we have a "data" data frame with more then the three columns we need. This code will clean it from them...
# Note: the function doesn't handle NA's. In case of NA in one of the block T outcomes, that entire block should be removed.
# stopping in case there is NA in the Y vector
if(sum(is.na(data[,Y.name])) > 0) stop("Function stopped: This function doesn't handle NA's. In case of NA in Y in one of the blocks, then that entire block should be removed.")
# make sure that the number of factors goes with the actual values present in the data:
data[,X.name ] <- factor(data[,X.name ])
data[,block.name ] <- factor(data[,block.name ])
number.of.X.levels <- length(levels(data[,X.name ]))
if(number.of.X.levels == 2) { warning(paste("'",X.name,"'", "has only two levels. Consider using paired wilcox.test instead of friedman test"))}
# making the object that will hold the friedman test and the other.
the.sym.test <- symmetry_test(formu, data = data, ### all pairwise comparisons
teststat = "max",
xtrafo = function(Y.data) { trafo( Y.data, factor_trafo = function(x) { model.matrix(~ x - 1) %*% t(contrMat(table(x), "Tukey")) } ) },
ytrafo = function(Y.data){ trafo(Y.data, numeric_trafo = rank, block = data[,block.name] ) }
)
# if(to.print.friedman) { print(the.sym.test) }
if(to.post.hoc.if.signif)
{
if(pvalue(the.sym.test) < signif.P)
{
# the post hoc test
The.post.hoc.P.values <- pvalue(the.sym.test, method = "single-step") # this is the post hoc of the friedman test
# plotting
if(to.plot.parallel & to.plot.boxplot) par(mfrow = c(1,2)) # if we are plotting two plots, let's make sure we'll be able to see both
if(to.plot.parallel)
{
X.names <- levels(data[, X.name])
X.for.plot <- seq_along(X.names)
plot.xlim <- c(.7 , length(X.for.plot)+.3) # adding some spacing from both sides of the plot
if(color.blocks.in.cor.plot)
{
blocks.col <- rainbow_hcl(length(levels(data[,block.name])))
} else {
blocks.col <- 1 # black
}
data2 <- data
if(jitter.Y.in.cor.plot) {
data2[,Y.name] <- jitter(data2[,Y.name])
par.cor.plot.text <- "Parallel coordinates plot (with Jitter)"
} else {
par.cor.plot.text <- "Parallel coordinates plot"
}
# adding a Parallel coordinates plot
matplot(as.matrix(reshape(data2, idvar=X.name, timevar=block.name,
direction="wide")[,-1]) ,
type = "l", lty = 1, axes = FALSE, ylab = Y.name,
xlim = plot.xlim,
col = blocks.col,
main = par.cor.plot.text)
axis(1, at = X.for.plot , labels = X.names) # plot X axis
axis(2) # plot Y axis
points(tapply(data[,Y.name], data[,X.name], median) ~ X.for.plot, col = "red",pch = 4, cex = 2, lwd = 5)
}
if(to.plot.boxplot)
{
# first we create a function to create a new Y, by substracting different combinations of X levels from each other.
subtract.a.from.b <- function(a.b , the.data)
{
the.data[,a.b[2]] - the.data[,a.b[1]]
}
temp.wide <- reshape(data, idvar=X.name, timevar=block.name,
direction="wide") #[,-1]
wide.data <- as.matrix(t(temp.wide[,-1]))
colnames(wide.data) <- temp.wide[,1]
Y.b.minus.a.combos <- apply(with(data,combn(levels(data[,X.name]), 2)), 2, subtract.a.from.b, the.data =wide.data)
names.b.minus.a.combos <- apply(with(data,combn(levels(data[,X.name]), 2)), 2, function(a.b) {paste(a.b[2],a.b[1],sep=" - ")})
the.ylim <- range(Y.b.minus.a.combos)
the.ylim[2] <- the.ylim[2] + max(sd(Y.b.minus.a.combos)) # adding some space for the labels
is.signif.color <- ifelse(The.post.hoc.P.values < .05 , "green", "grey")
boxplot(Y.b.minus.a.combos,
names = names.b.minus.a.combos ,
col = is.signif.color,
main = "Boxplots (of the differences)",
ylim = the.ylim
)
legend("topright", legend = paste(names.b.minus.a.combos, rep(" ; PostHoc P.value:", number.of.X.levels),round(The.post.hoc.P.values,5)) , fill = is.signif.color )
abline(h = 0, col = "blue")
}
list.to.return <- list(Friedman.Test = the.sym.test, PostHoc.Test = The.post.hoc.P.values)
if(to.print.friedman) {print(list.to.return)}
return(list.to.return)
} else {
print("The results where not significant, There is no need for a post hoc test")
return(the.sym.test)
}
}
# Original credit (for linking online, to the package that performs the post hoc test) goes to "David Winsemius", see:
# http://tolstoy.newcastle.edu.au/R/e8/help/09/10/1416.html
}

Example

(The code for the example is given at the end of the post)

Let's make up a little story: let's say we have three types of wine (A, B and C), and we would like to know which one is the best one (in a scale of 1 to 7). We asked 22 friends to taste each of the three wines (in a blind fold fashion), and then to give a grade of 1 till 7 (for example sake, let's say we asked them to rate the wines 5 times each, and then averaged their results to give a number for a persons preference for each wine. This number which is now an average of several numbers, will not necessarily be an integer).

After getting the results, we started by performing a simple boxplot of the ratings each wine got. Here it is:

The plot shows us two things: 1) that the assumption of equal variances here might not hold. 2) That if we are to ignore the "within subjects" data that we have, we have no chance of finding any difference between the wines.

So we move to using the function "friedman.test.with.post.hoc" on our data, and we get the following output:

$Friedman.Test

Asymptotic General Independence Test

data: Taste by

Wine (Wine A, Wine B, Wine C)

stratified by Taster

maxT = 3.2404, p-value = 0.003421

$PostHoc.Test

Wine B - Wine A 0.623935139

Wine C - Wine A 0.003325929

Wine C - Wine B 0.053772757

The conclusion is that once we take into account the within subject variable, we discover that there is a significant difference between our three wines (significant P value of about 0.0034). And the posthoc analysis shows us that the difference is due to the difference in tastes between Wine C and Wine A (P value 0.003). and maybe also with the difference between Wine C and Wine B (the P value is 0.053, which is just borderline significant).

Plotting our analysis will also show us the direction of the results, and the connected answers of each of our friends answers:

Here is the code for the example:

source("https://www.r-statistics.com/wp-content/uploads/2010/02/Friedman-Test-with-Post-Hoc.r.txt") # loading the friedman.test.with.post.hoc function from the internet
### Comparison of three Wine ("Wine A", "Wine B", and
### "Wine C") for rounding first base.
WineTasting <- data.frame(
Taste = c(5.40, 5.50, 5.55,
5.85, 5.70, 5.75,
5.20, 5.60, 5.50,
5.55, 5.50, 5.40,
5.90, 5.85, 5.70,
5.45, 5.55, 5.60,
5.40, 5.40, 5.35,
5.45, 5.50, 5.35,
5.25, 5.15, 5.00,
5.85, 5.80, 5.70,
5.25, 5.20, 5.10,
5.65, 5.55, 5.45,
5.60, 5.35, 5.45,
5.05, 5.00, 4.95,
5.50, 5.50, 5.40,
5.45, 5.55, 5.50,
5.55, 5.55, 5.35,
5.45, 5.50, 5.55,
5.50, 5.45, 5.25,
5.65, 5.60, 5.40,
5.70, 5.65, 5.55,
6.30, 6.30, 6.25),
Wine = factor(rep(c("Wine A", "Wine B", "Wine C"), 22)),
Taster = factor(rep(1:22, rep(3, 22))))
with(WineTasting , boxplot( Taste ~ Wine )) # boxploting
friedman.test.with.post.hoc(Taste ~ Wine | Taster ,WineTasting) # the same with our function. With post hoc, and cool plots

If you find this code useful, please let me know (in the comments) so I will know there is a point in publishing more such code snippets...