ggedit 0.0.2: a GUI for advanced editing of ggplot2 objects

Guest post by Jonathan Sidi, Metrum Research Group

Last week the updated version of ggedit was presented in RStudio::conf2017. First, a BIG thank you to the whole RStudio team for a great conference and being so awesome to answer the insane amount of questions I had (sorry!). For a quick intro to the package see the previous post.

To install the package:

devtools::install_github("metrumresearchgroup/ggedit",subdir="ggedit")

Highlights of the updated version.

  • verbose script handling during updating in the gagdet (see video below)
  • verbose script output for updated layers and theme to parse and evaluate in console or editor
  • colourpicker control for both single colours/fills and and palletes
  • output for scale objects eg scale*grandient,scale*grandientn and scale*manual
  • verbose script output for scales eg scale*grandient,scale*grandientn and scale*manual to parse and evaluate in console or editor
  • input plot objects can have the data in the layer object and in the base object.
    • ggplot(data=iris,aes(x=Sepal.Width,y=Sepal.Length,colour=Species))+geom_point()
    • ggplot(data=iris,aes(x=Sepal.Width,y=Sepal.Length))+geom_point(aes(colour=Species))
    • ggplot()+geom_point(data=iris,aes(x=Sepal.Width,y=Sepal.Length,colour=Species))
  • plot.theme(): S3 method for class ‘theme’
    • visualizing theme objects in single output
    • visual comparison of two themes objects in single output
    • will be expanded upon in upcoming post

Continue reading “ggedit 0.0.2: a GUI for advanced editing of ggplot2 objects”

ggedit – interactive ggplot aesthetic and theme editor

Guest post by Jonathan Sidi, Metrum Research Group

ggplot2 has become the standard of plotting in R for many users. New users, however, may find the learning curve steep at first, and more experienced users may find it challenging to keep track of all the options (especially in the theme!).

ggedit is a package that helps users bridge the gap between making a plot and getting all of those pesky plot aesthetics just right, all while keeping everything portable for further research and collaboration.

ggedit is powered by a Shiny gadget where the user inputs a ggplot plot object or a list of ggplot objects. You can run ggedit directly from the console from the Addin menu within RStudio.

Continue reading “ggedit – interactive ggplot aesthetic and theme editor”

R 3.3.2 is released!

R 3.3.2 (codename “Sincere Pumpkin Patch”) was released yesterday You can get the latest binaries version from here. (or the .tar.gz source code from here). The full list of bug fixes and new features is provided below.

Upgrading to R 3.3.2 on Windows

If you are using Windows you can easily upgrade to the latest version of R using the installr package. Simply run the following code in Rgui:

install.packages("installr") # install 
setInternet2(TRUE) # only for R versions older than 3.3.0
installr::updateR() # updating R.

Running “updateR()” will detect if there is a new R version available, and if so it will download+install it (etc.). There is also a step by step tutorial (with screenshots) on how to upgrade R on Windows, using the installr package. If you only see the option to upgrade to an older version of R, then change your mirror or try again in a few hours (it usually take around 24 hours for all CRAN mirrors to get the latest version of R).

I try to keep the installr package updated and useful, so if you have any suggestions or remarks on the package – you are invited to open an issue in the github page.

Continue reading “R 3.3.2 is released!”

Set Application Domain Name with Shiny Server

Guest post by AVNER KANTOR

I used the wonderful tutorial of Dean Attall to set my machine in Google cloud. After I finished to configure it successfully I wanted to redirect my domain to the Shiny application URL. This is a short description how you can do it.

Continue reading “Set Application Domain Name with Shiny Server”

Presidential Election Predictions 2016 (an ASA competition)

Guest post by Jo Hardinprofessor of mathematics, Pomona College.

ASA’s Prediction Competition

In this election year, the American Statistical Association (ASA) has put together a competition for students to predict the exact percentages for the winner of the 2016 presidential election. They are offering cash prizes for the entry that gets closest to the national vote percentage and that best predicts the winners for each state and the District of Columbia. For more details see:

http://thisisstatistics.org/electionprediction2016/

To get you started, I’ve written an analysis of data scraped from fivethirtyeight.com. The analysis uses weighted means and a formula for the standard error (SE) of a weighted mean. For your analysis, you might consider a similar analysis on the state data (what assumptions would you make for a new weight function?). Or you might try some kind of model – either a generalized linear model or a Bayesian analysis with an informed prior. The world is your oyster!

Continue reading “Presidential Election Predictions 2016 (an ASA competition)”

The reproducibility crisis in science and prospects for R

Guest post by Gregorio Santori (<[email protected]>)

The results that emerged from a recent Nature‘s survey confirm as, for many researchers, we are living in a weak reproducibility age (Baker M. Is there a reproducibility crisis? Nature 2016;533:453-454). Although the definition of reproducibility can vary widely between disciplines, in this survey was adopted the version for which “another scientist using the same methods gets similar results and can draw the same conclusions” (Reality check on reproducibility. Nature 2016;533:437). Already in 2009, Roger Peng formulated a definition of reproducibility very attractive: “In many fields of study there are examples of scientific investigations that cannot be fully replicated because of a lack of time or resources. In such a situation there is a need for a minimum standard that can fill the void between full replication and nothing. One candidate for this minimum standard is «reproducible research», which requires that data sets and computer code be made available to others for verifying published results and conducting alternative analyses” (Peng R. Reproducible research and Biostatistics. Biostatistics. 2009;10:405-408). For many readers of R-bloggers, the Peng’s formulation probably means in the first place a combination of R, LaTeX, Sweave, knitr, R Markdown, RStudio, and GitHub. From the broader perspective of scholarly journals, it mainly means Web repositories for experimental protocols, raw data, and source code.

Although researchers and funders can contribute in many ways to reproducibility, scholarly journals seem to be in a position to give a decisive advancement for a more reproducible research. In the incipit of the “Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals“, developed by the International Committee of Medical Journals Editors (ICMJE), there is an explicit reference to reproducibility. Moreover, the same ICMJE Recommendations reported as “the Methods section should aim to be sufficiently detailed such that others with access to the data would be able to reproduce the results“, while “[the Statistics section] describe[s] statistical methods with enough detail to enable a knowledgeable reader with access to the original data to judge its appropriateness for the study and to verify the reported results“.

In December 2010, Nature Publishing Group launched Protocol Exchange, “[…] an Open Repository for the deposition and sharing of protocols for scientific research“, where “protocols […] are presented subject to a Creative Commons Attribution-NonCommercial licence“.

In December 2014, PLOS journals announced a new policy for data sharing, resulted in the Data Availability Statement for submitted manuscripts.

In June 2014, at the American Association for the Advancement of Science headquarter, the US National Institute of Health held a joint workshop on the reproducibility, with the participation of the Nature Publishing Group, Science, and the editors representing over 30 basic/preclinical science journals. The workshop resulted in the release of the “Principles and Guidelines for Reporting Preclinical Research“, where rigorous statistical analysis and data/material sharing were emphasized.

In this scenario, I have recently suggested a global “statement for reproducibility” (Research papers: Journals should drive data reproducibility. Nature 2016;535:355). One of the strong points of this proposed statement is represented by the ban of “point-and-click” statistical software. For papers with a “Statistical analysis” section, only original studies carried out by using source code-based statistical environments should be admitted to peer review. In any case, the current policies adopted by scholarly journals seem to be moving towards stringent criteria to ensure more reproducible research. In the next future, the space for “point-and-click” statistical software will progressively shrink, and a cross-platform/open source language/environment such as R will be destined to play a key role.

 

Using 2D Contour Plots within {ggplot2} to Visualize Relationships between Three Variables

Guest post by John Bellettiere, Vincent Berardi, Santiago Estrada

The Goal

To visually explore relations between two related variables and an outcome using contour plots. We use the contour function in Base R to produce contour plots that are well-suited for initial investigations into three dimensional data. We then develop visualizations using ggplot2 to gain more control over the graphical output. We also describe several data transformations needed to accomplish this visual exploration.

Continue reading “Using 2D Contour Plots within {ggplot2} to Visualize Relationships between Three Variables”

R 3.3.1 is released

R 3.3.1 (codename “Bug in Your Hair”) was released yesterday You can get the latest binaries version from here. (or the .tar.gz source code from here). The full list of bug fixes is provided below new features and (this release does not introduce new features).

Upgrading to R 3.3.1 on Windows

If you are using Windows you can easily upgrade to the latest version of R using the installr package. Simply run the following code in Rgui:

install.packages("installr") # install 
setInternet2(TRUE) # only for R versions older than 3.3.0
installr::updateR() # updating R.

Running “updateR()” will detect if there is a new R version available, and if so it will download+install it (etc.). There is also a step by step tutorial (with screenshots) on how to upgrade R on Windows, using the installr package. If you only see the option to upgrade to an older version of R, then change your mirror or try again in a few hours (it usually take around 24 hours for all CRAN mirrors to get the latest version of R).

I try to keep the installr package updated and useful, so if you have any suggestions or remarks on the package – you are invited to open an issue in the github page.

Continue reading “R 3.3.1 is released”

heatmaply: interactive heat maps (with R)

I am pleased to announce heatmaply, my new R package for generating interactive heat maps, based on the plotly R package.

tl;dr

By running the following 3 lines of code:

install.packages("heatmaply")
library(heatmaply)
heatmaply(mtcars, k_col = 2, k_row = 3) %&gt;% layout(margin = list(l = 130, b = 40))

You will get this output in your browser (or RStudio console):

Continue reading “heatmaply: interactive heat maps (with R)”

R 3.3.0 is released!

R 3.3.0 (codename “Supposedly Educational”) was released today. You can get the latest binaries version from here. (or the .tar.gz source code from here). The full list of new features and bug fixes is provided below.

Upgrading to R 3.3.0 on Windows

If you are using Windows you can easily upgrade to the latest version of R using the installr package. Simply run the following code in Rgui:

install.packages("installr") # install 
setInternet2(TRUE)
installr::updateR() # updating R.

Running “updateR()” will detect if there is a new R version available, and if so it will download+install it (etc.). There is also a step by step tutorial (with screenshots) on how to upgrade R on Windows, using the installr package. If you only see the option to upgrade to an older version of R, then change your mirror or try again in a few hours (it usually take around 24 hours for all CRAN mirrors to get the latest version of R).

I try to keep the installr package updated and useful, so if you have any suggestions or remarks on the package – you are invited to open an issue in the github page.

CHANGES IN R 3.3.0

SIGNIFICANT USER-VISIBLE CHANGES

  • nchar(x, *)‘s argument keepNA governing how the result for NAs in x is determined, gets a new default keepNA = NA which returns NA where x is NA, except for type = "width" which still returns 2, the formatting / printing width of NA.
  • All builds have support for https: URLs in the default methods for download.file(), url() and code making use of them.Unfortunately that cannot guarantee that any particular https: URL can be accessed. For example, server and client have to successfully negotiate a cryptographic protocol (TLS/SSL, …) and the server’s identity has to be verifiable via the available certificates. Different access methods may allow different protocols or use private certificate bundles: we encountered a https: CRAN mirror which could be accessed by one browser but not by another nor by download.file() on the same Linux machine.

NEW FEATURES

Continue reading “R 3.3.0 is released!”